Оглавление

Форум

Библиотека

 

 

 

 

 

Сверхтекучесть жидкого гелия

В 1937 году Петр Леонидович Капица обнаружил у гелия парадоксальное свойство: при охлаждении до температур, близких к абсолютному нулю, жидкий гелий не только не становится твердым, но теряет вязкость, переходя в состояние сверхтекучести. Абсолютный нуль - температура, при которой хаотическое движение атомов прекращается. Следовательно, при абсолютном нуле все тела должны быть твердыми. Жидкий гелий - единственное вещество, которое не затвердевает при абсолютном нуле.

Вот как излагал сам Ландау сущность сверхтекучести в публичной лекции (стенограмма лекции приводится в некотором сокращении):

"Наиболее замечательное свойство жидкого гелия было открыто советским физиком Петром Леонидовичем Капицей. Капица показал, что жидкий гелий вовсе лишен всякой вязкости. Что такое вязкость" Это способность жидкости сопротивляться движению. Вы ясно представляете себе, насколько труднее было бы плавать в меде, чем в воде. Соответственно этому говорят, что мед " это жидкость, гораздо более вязкая, чем вода.

Жидкости по своей вязкости бывают самые различные " от очень слабо вязких жидкостей, как вода, спирт, до очень вязких жидкостей типа глицерипа, меда и даже стекла, которое тоже является необычайно вязкой жидкостью, и т. д.

Жидкий гелий I обладает малой вязкостью по сравнению с другими жидкостями. Но эта вязкость еще вполне нормальна и измерима. Она в 500 раз меньше вязкости воды. Петр Леонидович Капица произвел очень простой и необычайно важный эксперимент. Он наблюдал протекание гелия через очень тонкие щели. Щели эти были настолько тонкие, что даже такая с обычной точки зрения невязкая жидкость, как вода, вытекала бы через эти щели в течение многих п многих суток. Оказалось, что жидкий гелий II протекает через щели в течение нескольких секунд. Петру Леонидовичу Капице удалось показать, что вязкость гелия отличается от вязкости воды не менее чем в миллиард раз. Это только верхний предел, связанный с точностью экспериментов, тот предел вязкости, который наблюдал Петр Леонидович Капица. Вязкость гелия II оказалась столь маленькой, что вообще не могла быть измерена. Можно утверждать, что жидкий гелий II просто лишен всякой вязкости.

Это явление получило название сверхтекучести. Поэтому гелий II называют сверхтекучей жидкостью.

Открытие Петром Леонидовичем Капицей сверхтекучести сразу объяснило казавшееся почти мистичетским перетекание гелия из одного сосуда в другой. Все жидкости, смачивающие стенки, покрывают эти стенки очень тонким слоем. Этот тонкий слой незаметен для глаза и обычно вообще никак не проявляется. В жидком гелии благодаря сверхтекучести жидкость довольно быстро перетекает из сосуда по этой тонкой пленке, которая имеет толщину стотысячной доли миллиметра.

Таким образом, одно из явлений, казавшихся мистическим, получило свое объяснение. Зато, однако, открылись многие другие явления, оказавшиеся еще более непонятными. Прежде всего оказалось, что когда гелий течет через щель, то происходит странное явление с теплом. Если гелий протекает из одного сосуда в другой через очень тонкую щель, то оказывается, что при этом гелий в том сосуде, куда он вытекает, охлаждается, а в том сосуде, из которого он вытекает, нагревается. Это явление получило название термомеханического эффекта и само по себе представлялось крайне удивительным.

Еще более удивительным представляется другое свойство гелия. Капица показал, что гелий сверхтекуч, то есть мгновенно вытекает через всякую щель. Протекание через щель есть не единственный способ измерения вязкости. В физике известны и другие способы, которые основаны на сопротивлении жидкости движению в ней тела. Если вы хотите измерить вязкость воды, вы можете измерить ее двумя способами: вы можете пропускать воду через щель и можете двигать в воде тело и определять вязкость по тем силам, которые действуют на это тело.

Для гелия были применены оба эти способа, и оказалось, что в то время, когда у всех жидкостей они приводят к совершенно тождественным не только качественным, по и количественным результатам, у гелия они приводят, если можно так выразиться, к результатам противоположным. Жидкий гелий II при протекании через щель сверхтекуч, то есть не обнаруживает вовсе никакой вязкости. Он обнаруживает сопротивление движению тела, то есть в то время, когда все обыкновенные жидкости обладают обыкновенной вязкостью, жидкий гелий обладает двумя совершенно различными по природе вязкостями: одной - бесконечно малой, отсутствующей, и другой - вполне качественной, измеримой вязкостью.

Капице удалось сделать эксперименты, кажущиеся еще более удивительными.

Эксперимент заключается в следующем. В большой сосуд с гелием была погружена бульбочка с идущей от нее трубочкой, открытой и наполненной гелием. В этой бульбочке гелий слегка подогревался. Что произошло бы с какой-нибудь жидкостью? Жидкость нагревалась бы, тепло выходило бы в окружающую жидкость, и можно было бы обнаружить, что разные места жидкости обладают разной температурой.

Петр Леонидович Капица поместил напротив отверстия капилляра легкое крылышко и, двигая этим крылышком, показал, что из отверстия капилляра бьет струя гелия. Обстоятельство, удивительное во всех отношениях. Удивителен не столько сам факт, что при нагревании ни с того ни с сего бьет струя гелия. Еще более удивительным является то обстоятельство, что сосуд при этом не пустеет. Если из сосуда систематически вырывается струя жидкости, то через короткое время в сосуде не должно ничего остаться. В данном случае никаких изменений не происходит. Сосуд остается наполненным гелием, как вначале.

Получается "библейский эксперимент" в стиле куста, который горит и не сгорает. Так и здесь: бульбочка, из которой бьет струя и которая при этом не пустеет, а остается столь же полной, какой была и вначале.

Это обстоятельство является одним из многочисленных примеров (некоторые из которых я уже упомянул) парадоксальности свойств жидкого гелия. Его свойства на первый взгляд кажутся совершенно нелепыми, как в известном анекдоте о жирафе, про которого сказано, что "такого не может быть". Такое примерно ощущение вызывают свойства жидкого гелия. Получается ощущение, что вообще такого не может быть.

Само собою разумеется, что никаких логических противоречий здесь, как и в других областях физики, быть не может. Это показывает только на то, что причины этих свойств лежат в очень необычных вещах, очень чуждых нашему представлению. И действительно, в дальнейшем мне удалось построить теорию, которая объяснила некоторые существенные свойства жидкого гелия.

Было бы невозможно даже в самых общих чертах попытаться объяснить вам сущность этой теории. Она основана на одном из величайших достижений физики двадцатого века, так называемой квантовой механике, Квантовая механика - это бесконечно сложная как методически, так и по заложенным в ней физическим понятиям область теории физики. Она характеризуется тем, что многие из используемых ею понятий очень плохо доступны нашему восприятию. <...>

Оказывается, что чисто теоретически квантовая механика наделила жидкость, находящуюся при низких температурах, близких к абсолютному нулю, при которых находится жидкий гелий, следующей особенностью. Для того чтобы объяснить эту особенность, я напомню очень старую историю о некоторой теории, которая в свое время фигурировала в физике. В свое время в физике фигурировала такая, разумеется никогда не существовавшая, жидкость, как теплород. Считалось, что наряду с обыкновенной жидкостью существует еще тепловая жидкость и что если тело является теплым, то это значит, что в нем больше теплорода. Если же меньше теплорода, значит, оно соответственно становится более холодным. Теплород - жидкость, специально придуманная для объяснения этих явлений.

Эксперименты доказали, что никакой тепловой жидкости не существует, а тепло есть движение частиц жидкости. Оказывается, что в гелии сохранилось кое-что от теплорода, кое-что, конечно, в очень своеобразном смысле. Именно в обыкновенной жидкости тепло непосредственно связано со всей жидкостью, точнее говоря, со всей массой жидкости.

Иначе обстоит дело в жидком гелии. Там оказывается, что тепло связано не со всей массой жидкости, а только с ее частью, причем меньшей частью, то есть если говорить как бы о тепловой жидкости, то в обыкновенных жидкостях тепловая жидкость - это вся жидкость, в жидком же гелии тепловая жидкость - это часть жидкости. Чем меньшая часть, тем ниже температура.

Эта часть получила название нормальной массы гелия. <...> При температуре 2,19 градуса Кельвина происходит переход от гелия II к гелию I. Выше этой температуры вся масса гелия - это нормальная масса. Ниже этой температуры - часть гелия, которая пе связана с теплом. И чем ниже температура, тем меньшая часть гелия связана с теплом. При абсолютном нуле весь гелий никак с теплом не связан.

Из существования таких двух масс гелия - массы нормальной и остальной массы, которая получила название массы сверхтекучести, следует другое, не менее на первый взгляд чудовищное утверждение, что гелий способен одновременно к двум движениям. Имея две массы, хотя в одном и том же месте, в одном и том же объеме, гелий может совершать одновременно два различных движения одновременно в одной точке жидкости. В то время как обычная жидкость в одной точке имеет одну определенную скорость, гелий в одной точке имеет две скорости, совершенно различные. Одна из скоростей называется скоростью нормального движения, другая - скоростью сверхтекучего движения.

Теория показывает, что оба эти движения должны обладать существенно различными свойствами. Нормальное движение, связанное с теплом, является нормальным во всех смыслах. Именпо оно обладает всеми свойствами всякого нормального движения, в частности оно связано с вязкостью. Наоборот, сверхтекучее движение не связано с теплом, не связано ни с какой вязкостью.

На первый взгляд такая концепция имеет характер почти абсурда. Может показаться, что это довольно бессмысленное рассуждение, которое если и объясняет что-нибудь, то чисто словесным образом, без всякого реального результата. Однако <...> это не так. Теория не только объяснила те явления, о которых я говорил, но и предсказала ряд явлений, которые в дальнейшем были обнаружены экспериментами. Больше того, те два движения, о которых я вам сказал и существование которых производит такое дикое впечатление, может быть непосредственно наблюдено на экспериментах.

Это может быть сделано следующим образом. Представьте себе, что цилиндрический сосуд с гелием начинает вращаться, причем вращаться очень медленно, настолько медленно, что жидкость должна увлекаться при своем движении стенками сосуда. Так как жидкий гелий способен к двум движениям и его масса состоит из двух масс, то увлекаться будет только одна из них, именно нормальная масса гелия. Сверхтекучее движение, не будучи связано пи с какой вязкостью, не будет ни в каком взаимодействии со стенками сосуда и увлекаться не будет. При вращении гелия будет вращаться часть гелия, между тем как при вращении любой другой жидкости будет вращаться вся жидкость.

Эти замечательные результаты были обнаружены докторантом Элевтером Андроникашвили , который непосредственно проделал, я бы не сказал, эти, но аналогичные опыты, отличающиеся от изложенного опыта только деталями. При этом эксперименте оказалось, что выше 2,19 градуса гелий увлекается весь, ниже этой температуры гелий увлекается тем меньшим коичеством, чем ниже температура. Таким образом, Андроникашвили имел возможность непосредственно измерить, какая часть массы гелия является нормальной и какая часть массы гелия является сверхтекучей. Сверхтекучее движение не есть теоретическая функция, а это есть вообще реально наблюдающееся при эксперименте явление. Количественно полученные результаты тоже оказались в прекрасном согласии с теорией. Таким образом, эксперимент Андроникашвили наглядно показал, что заложенная в теории жидкого гелия основа, несмотря на свою странность, отвечает реальной действительности. Легко также видеть, что с помощью этих теоретических представлений действительно объясняются те кажущиеся противоречивыми явления, которые наблюдаются в жидком гелии.

Возьмем этот удивительный эксперимент Капицы с вытекающей струей жидкого гелия. С точки зрения теории сверхтекучести ясно, в чем тут дело. Нагревание жидкого гелия происходит необычным образом. Обычным образом тепло переходит от молекулы к молекуле, без всего движения в целом. В жидком гелии под влиянием нагревания возникают одновременно два движения: тепло скапливается слева, потом движется слева направо вместе с нормальным движением. Сверхтекучее же движение, наоборот, движется в противоположную сторону, так что полное количество гелия в бульбочке, естественно, установилось неизменно.

В жидком гелии, в котором распространяется тепло, имеется два встречных потока: поток нормальный и поток сверхтекучий, движущийся в противоположную сторону. Сверхтекучий поток благодаря отсутствию вязкости никак не действует на погруженные в пего предметы. Нормальный поток вследствие вязкости действует па погруженные предметы. Поэтому крылышко, погруженное в гелий, чувствуя струю вытекающего гелия, колеблется, по оно совершенно не чувствует струи втекающего гелия.

Этим же обстоятельством объясняется и грандиозная теплопроводность гелия - способность к передаче громадного количества тепла. В обыкновеннной жидкости, где тепло передается молекулярным движением - от молекулы к молекуле, тепло передается медленно. В жидком гелии тепло буквально течет слева направо. Таким образом может быть передано огромное количество тепла.

Наличием обоих течений объясняется и другое парадоксальное обстоятельство, о котором я говорил, именно то, что гелий обладает одновременно двумя вязкостями, в зависимости от того, каким способом эти вязкости измеряются. Когда гелий вытекает через щель, то, естественно, происходит сверхтекучее течение, не связанное с какой-либо вязкостью. Поэтому никакой вязкости мы при этом не наблюдаем.

Наоборот, когда в гелии движется тело, то это тело, естественно, взаимодействует не только со сверхтекучей, но и с нормальной частью, откуда и наблюдается вязкость. Этим объясняется и другое обстоятельство, а именно знаменитый гелиево-термический эффект - то, что гелий охлаждается в том сосуде, куда втекает через тонкие щели, и нагревается в том сосуде, откуда вытекает. При сверхтекучем движении гелий вытекает без всякого тепла. В том сосуде, куда он втекает, одно и то же количество тепла, а гелия становится больше. Соответственно гелий в этом сосуде охлаждается. Наоборот, в том сосуде, откуда гелий вытекал, гелия становилось меньше, а тепла оставалось столько же. Естественно, что гелий нагревался. Естественно, что все основные явления, которые наблюдаются в гелии, находят себе теоретическое объяснение.

Кроме этих явлений теорией было предсказано еще одно явление, также в дальнейшем открытое в эксперименте. Именно в жидком гелии, в отличие от обыкновенной жидкости, могут распространяться два разных звука. Звук - это колебание плотности жидкости. В вязкой жидкости могут происходить такие колебания, которые распространяются с определенной скоростью. Такие колебания могут распространяться в гелии I со скоростью 150 метров в секунду. С такой же скоростью звук может распространяться в гелии II.

Теория показала, что наряду с таким звуком в гелии может распространяться звук особого рода, связанный с возможностью двух движений. В гелии возможен еще один звук, когда в целом масса не перемещается, а колебание нормальной и сверхтекучей части происходит друг относительно друга. Содержащая тепло часть гелия колеблется относительно остального гелия.

Этот звук получил название второго звука и был открыт Пешковым , который обнаружил распространение этого звука в гелии II. Распространение второго звука легко отличить от распространения обыкновенного звука, потому что его скорость не имеет ничего общего со скоростью обыкновенного звука: вместо 250 метров в секунду составляет 20 метров в секунду. Пешкову удалось обнаружить, что в гелии действительно распространяется особого вида звук. Он вызывается колебанием тепла.

Если производить колебания температуры в обыкновенной жидкости, эти колебания быстро затухают. Никакого второго звука здесь не получается. Если колебать температуру в жидком гелии, то это колебание распространяется как звук с определенной скоростью, которая составляет около 20 метров в секунду.

Таким образом, и это явление, предсказанное теоретически, было наблюдено при эксперименте. Есть, разумеется, и много других явлений, более или менее удивительных, происходящих с жидким гелием. Разумеется, не следует думать, что все явления, происходящие в жидком гелии,

Замечание Читателя

Труевцев Петр Николаевич Petya.truevtsev@yandex.ru 

Прекрасная статья, только речь в ней шла о нейтронном газе в составе электромагнитной волны,то есть химического элемента гелия.Сверхтекучесть нейтронного газа - это первая ласточка о жидкости, как агрегатного состояния нейтронного газа.

Ссылки:

  • Квантовая жидкость
  • Ландау: Ленинская и Нобелевская премии 1962 г.
  • Ландау - теория сверхтекучести жидкого гелия
  • Рецензия С. Шноля на книги "Двадцатый век Анны Капицы"
  •  

     

    Оставить комментарий:
    Представьтесь:             E-mail:  
    Ваш комментарий:
    Защита от спама - введите день недели (1-7):

    Рейтинг@Mail.ru

     

     

     

     

     

     

     

     

    Информационная поддержка: ООО «Лайт Телеком»